Identification of nonlinear systems with non-persistent excitation using an iterative forward orthogonal least squares regression Algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of nonlinear systems with non-persistent excitation using an iterative forward orthogonal least squares regression algorithm

A new iterative orthogonal least squares forward regression (iOFR) algorithm is proposed to identify nonlinear systems which may not be persistently excited. By slightly revising the classic forward orthogonal regression (OFR) algorithm, the new iterative algorithm provides search solutions on a global solution space. Examples show that the new iterative algorithm is computationally efficient a...

متن کامل

Least-Squares-Based Iterative Identification Algorithm for Wiener Nonlinear Systems

This paper focuses on the identification problem ofWiener nonlinear systems.The application of the key-term separation principle provides a simplified form of the estimated parameter model. To solve the identification problem of Wiener nonlinear systems with the unmeasurable variables in the information vector, the least-squares-based iterative algorithm is presented by replacing the unmeasurab...

متن کامل

An iterative orthogonal forward regression algorithm

A novel iterative learning algorithm is proposed to improve the classic orthogonal forward regression (OFR) algorithm in an attempt to produce an optimal solution under a purely OFR framework without using any other auxiliary algorithms. The new algorithm searches for the optimal solution on a global solution space while maintaining the advantage of simplicity and computational efficiency. Both...

متن کامل

Orthogonal Nonlinear Least-Squares Regression in R

Orthogonal nonlinear least squares (ONLS) regression is a not so frequently applied and largely overlooked regression technique that comes into question when one encounters an ”error in variables” problem. While classical nonlinear least squares (NLS) aims to minimize the sum of squared vertical residuals, ONLS minimizes the sum of squared orthogonal residuals. The method is based on finding po...

متن کامل

Parsimonious least squares support vector regression using orthogonal forward selection with the generalised kernel model

A sparse regression modelling technique is developed using a generalised kernel model in which each kernel regressor has its individually tuned position (centre) vector and diagonal covariance matrix. An orthogonal least squares forward selection procedure is employed to append the regressors one by one. After the determination of the model structure, namely the selection of an appropriate numb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Modelling, Identification and Control

سال: 2015

ISSN: 1746-6172,1746-6180

DOI: 10.1504/ijmic.2015.067496